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1. INTRODUCTION 
Applications of artificial intelligence are widely spread in last decades. Artificial 
intelligence is the branch of computer science that is concerned with the automation 
of intelligent behavior of human being. Genetic algorithm has attained considerable 
interest as a procedure that mimics the process of natural selection and survival of the 
fittest beside the neural networks which is inspired by the organization and 
functioning of the biological neurons and expert systems that are a simulation of 
expert reasoning. Genetic algorithms have been developed by John Holland, his 
colleague and his students in the University of Michigan. Its applications are widely 
spread in the current and last decade in the field of search and optimization.  
 
The area of structural optimization has been and continues to be an active area of 
research. Improving the efficiency of numerical procedures, locating the global 
optimum, including realistic definitions of design variables, and handling wider class 
of problems are topics of most importance. Many difficulties arise in the optimal 
structural design using traditional mathematical methods as the existence of large 
number of design variable together with extensive constraints in addition to the 
probability of converging to locally optimal regions. On the other hands and for 
multiobjective optimization, the objectives to be achieved may frequently conflict 
with each other. In this case, no single ideal solution exists, which simultaneously 
satisfies the decision-maker across all criteria. Heuristic algorithms seemed to be 
suitable for solving the complicated problem of structural optimizations. Among the 
different techniques of evolutionary algorithms (genetic programming, simulated 
annealing, differential evolution, tabu search, etc), genetic algorithms were reported 
as the most common in engineering optimization practice (Jones et al (2002), Hrstka 
et al (2003)). 
 
The application of genetic algorithms to the solution of optimal structural design 
problem was early done by Goldberg and Santani (1986). Great attention is then 
directed toward the development of genetic algorithm based optimization procedures 
and tools in different fields. The optimal design of steel trusses and frames attracted 
the majority of research especially in the early developments (Rajeev and 
Krishnamoorthy (1992), Jenkins (1992), Coello (1994), Maher et al (1995), 
Galante, M. (1996)). Steel design benchmark problems were applied in that work to 
make developments and enhancements on the procedures and techniques of genetic 
algorithms. Miscellaneous fields then attracted the application of genetic algorithms in 
different areas of optimum structural design. Additional investigations were made on 
the optimum steel design (Chen and Rajan (1999), Nanakorn and Meesomklin 
(2001),Ali et al (2003)) and optimal design of concrete structures (Rafiq and 
Southcombe (1998), Maruyama et al (2001), Catallo (2004)). As relatively modern 
structural applications, fields as the optimization of composite laminates 
(Venkataraman and Haftka (1999), Grosset et al (2002), Lin and  Lee (2004)) and 



Genetic Algorithm Applications in Structural Engineering

 

-2 - 

structural control (Arfiadi and Hadi (2000), Ahlawat and Ramaswamy (2003), 
Park et al (2004)) also attracted the research on genetic algorithm application. 
Application of genetic algorithms extended to many other fields as the damage 
detection of structures (Friswell et al (1998), Ratnam and Rao (2004)), design of 
floor systems (Miles et al (2001)) and topology design (Wang and Tai (2004)). 
Research on the structural application of genetic algorithms extends over recent years 
as investigated in the literature. 
 
In the present article, a review of genetic algorithm and its application to the field of 
structural engineering are presented. AT first, a brief introduction to genetic algorithm 
is presented including definitions, operators and categories. The genetic algorithm as 
being a member of optimization techniques and evolutionary algorithms is also 
discussed. Different structural applications of genetic algorithms in the optimization 
of steel structures, concrete structures, structural modeling, composites and structural 
control are then demonstrated. Finally, conclusions are extracted and fields of future 
developments are suggested.  
 

2. OVERVIEW OF GENETIC ALGORITHM 
In this section, brief description of genetic algorithm including the basic definitions of 
genetic algorithms and the main operators used in their development. Categories of 
genetic algorithms are discussed and the position of such technique among 
optimization techniques and evolutionary algorithms is illustrated 

2.1. Definition of Genetic Algorithm 

Genetic Algorithms are defined as search algorithms based on the mechanics of 
natural selection and natural genetics (Goldberg (1989)). They combine survival of 
the fittest among string structures with a structured yet randomized information 
exchange to form a search algorithm with some of the innovative flair of human 
search. Genetic algorithms have been developed by John Holland, his colleague and 
his students in the University of Michigan. Genetic algorithm is a class of artificial 
intelligence (AI) which is defined as the branch of computer science that is concerned 
with the automation of intelligent behavior. Artificial Intelligence is a multi 
disciplinary field that encompasses computer science, neuroscience, Philosophy, 
Psychology, robotics and linguistics; and devoted to the reproduction of the methods 
or results of human reasoning and brain activity. It includes artificial neural network 
which imitates the organization and functioning of biological neurons, natural 
languages, expert systems and too many disciplines in addition to genetic algorithms.  
 
A genetic algorithm approaches the solution of a given problem by taking a set of 
individuals (parents) and performing operations (crossover) on them to produce a new 
set of individuals (offspring). Selection is then takes place among the population of 
parents and offspring letting certain individuals (the fittest) to survive into the next 
generation. Although randomness plays a large rule in order to avoid stagnation in the 
population's evolution, ideally the offspring should eventually become better (i.e. 
fitter) (Ignat (1998)). Simulation of genetic algorithm procedure is shown in Figure 
(1) and flow chart of its application is shown in Figure (2).  
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Figure (1) Simulation of Genetic Algorithm Procedure 

 
 
 
 
 

 
 

Figure (2) Systematic representation of Genetic Algorithms (Miles et al (2001)) 
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Common terms used in the definition and the development of genetic algorithm are 
listed below: 
 

 A population is a set of chromosomes at specified generation which 
represent a subset of solution space 

 
 A chromosome is a data structure that holds a "string" of task parameters, or 

genes. This string may be stored, for example, as a binary bit-string (binary 
representation) or as an array of integers (floating point or real-coded 
representation) that represent a floating point number. This chromosome is 
analogous to the base-4chromosomes present in our own DNA. Normally.  

 
 A gene is a subsection of a chromosome that usually encodes the value of a 

single parameter.  
 

 An allele is the value of a gene. For example, for a binary representation 
each gene may have an allele of 0 or 1, and for a floating point 
representation, each gene may have an allele from 0 to 9.  

 
 The fitness of an individual is a value that reflects its performance (i.e., how 

well solves a certain task). In engineering optimization the fitness usually 
represents the objective function to be maximized or minimized. 

 
 A genotype represents a potential solution to a problem, and is basically the 

string of values chosen by the user (Identical to chromosome).  
 

 A phenotype is the meaning of a particular chromosome, defined externally 
by the user. It represents the solution in problem space corresponding to the 
chromosome  

 
To clarify the definitions mentioned and illustrate the representation of real world 
engineering optimization problem using genetic algorithm the traditional 10-bar truss 
(presented in Rajeev and Krishnamoorthy (1992), Galante (1996), Turkkan 
(2003), .. etc.) representation is discussed. In this example, the truss, as shown in 
Figure (3), contains 10 bars and the problem is sizing problem such that the design 
variables are the cross sectional area of the truss members. Thus the chromosome 
must contain 10 genes, each map to a specified member cross section. As commercial 
available steel cross sections are limited, discrete values rather than continuous are 
included according to given tables. If 16 different cross sections (Table.1) are selected 
to be applied to the design of the truss (Rajeev and Krishnamoorthy (1992)) and 
each cross section is numbered, 4 binary digits are needed to represent the section 
number. Thus 40 bits are required to represent the cross section of the truss members 
(10 members   4 bits/member). As shown in Figure (4), the phenotype contains the 
cross sections of different members and the genotype is the binary representation of 
section number of each member while the population is the set of solutions in single 
generations. In the truss example, the fitness is defined as the weight (to be 
minimized) of the truss composed of selected members and constraints are applied in 
terms of member stress, buckling, and structure deflection. 
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Figure (3) The 10 bar truss example (Turkkan (2003)) 

 
 
 
 
 
 

Table (1) Discrete cross section area of steel sections used 
 

 Section 
No. 

Cross section 
Area 

Binary 
Representation 

 

 0 1.62 0000  
 1 1.80 0001  
 2 1.99 0010  
 3 2.13 0011  
 4 2.38 0100  
 5 2.62 0101  
 6 2.63 0110  
 7 2.88 0111  
 8 2.93 1000  
 9 3.09 1001  
 10 3.13 1010  
 11 3.38 1011  
 12 3.47 1100  
 13 3.55 1101  
 14 3.63 1110  
 15 3.84 1111  
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 1 2 3 4 5 6 7 8 9 10 Member 

            

Phenotype  3.13 1.80 2.38 2.38 1.99 3.13 3.84 2.93 1.80 2.88 area 

            

 10 1 11 11 2 10 15 8 1 7 
Section 
Number 

            

        Gene    

            

Chromosome 
(Genotype)  1010 0001 1011 1011 0010 1010 1111 1000 0001 0111 

 

 

 

            

Po
pu

la
ti

on
 

 

0001 1110 1011 0010 1110 1010 1110 1010 0101 0010  
1101 0010 0100 1011 1011 1010 1011 0001 1011 0011  
0101 0011 0111 1010 1001 0101 1100 0010 0101 0000  
1111 1011 1110 1001 0101 1011 1011 1000 0100 1011  
0010 0011 0100 1010 0101 0100 0111 1010 0100 0000  

. . . . . . . . . .  

. . . . . . . . . .  

. . . . . . . . . .  

. . . . . . . . . .  
0001 0010 0111 1011 0101 0010 1011 1010 1011 1011  

             

 
Figure (4) Coding of the 10 bar truss example 

 
 
After coding of design variables, evolution is a process that operates in chromosomes 
rather than on the biological creature they encode (Wang and Chen (1996)) which 
makes genetic algorithms behaves as a blind search. Five main basic components are 
necessary for developing a genetic algorithm based optimization (Gen and Cheng 
(2000), Koza (1992)) 
 

1- A genetic representation of  solutions to the problem  

2- A way to create an initial population of solution 

3- An evaluation function rating solution in terms of their fitness 

4- Genetic operators that alter the genetic composition of children during 
reproduction  

5- Values for the parameters of genetic algorithms 
 
 
The methods by which encoding of design variables ca be classified as follows: (Gen, 
M., and Cheng, R. (2000),) 
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 Binary Encoding  

 Real- Number Encoding  

 Integer Or Literal Permutation Encoding  

 General Data Structure Encoding  

 

2.2. Operators of Genetic Algorithm 

A simple genetic algorithm that yields good results in many practical problems is 
composed of three operators; namely reproduction, crossover, and mutation explained 
as: Goldberg (1989) 
 
Reproduction is a process in which individual strings are copied according to their 
objective function values, F (biologists call this function the fitness function). 
Intuitively, we can think of the function F as some measure of profit, utility, or 
goodness that we want to maximize. Copying strings according to their fitness values 
means that strings with a higher value have a higher probability of contributing one or 
more offspring in the next generation. This operator, of course, is an artificial version 
of natural selection (survival of the fittest) among string creatures. The selection 
criteria chosen can be one of the following (Gen and Cheng (2000),) 

 

 Roulette Wheel Selection  

 Tournament Selection  

 Steady- State Reproduction 

 Ranking And Scaling  

 Sharing  
 
Selection methods were discussed elsewhere (Goldberg (1989)). There are at least 
two reasons for the choice of tournament selection. First, tournament selection 
increases the probability of survival of better strings. Second, only the relative fitness 
values are relevant when comparing two strings. In other words, the selection depends 
on individual fitness rather than ratio of fitness values. Chen and Rajan (1999). 
 
Crossover is an operator used to produce two offspring from the selected parents. To 
select the parents for crossover, from the new population, a random number in the 
range 0 and 1 is generated. If this number is less than the probability of crossover, 
then the chromosome is selected for crossover (Ahlawat and Ramaswamy (2002-a)). 
Several crossover techniques are established for binary coded genetic algorithm 
between which the commonly used types can be listed as (Hasancebi and Erbatur 
(2000)): 
 
 Single-Point Crossover. 
Single point crossover is the first technique used in genetic algorithm and the most 
commonly used one. In single point crossover, a position is randomly chosen and then 
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the two parents are exchanged at his point to form two new children (individuals). A 
schematic representation of single-point crossover is illustrated in Figure (5) 
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Parent 1 1 
 

0 1 0 0 1 1 0 0 

Parent 2 1 1 0 0 1 0 0 1 0 

          

Offspring 1 1 0 1 0 0 1 0 1 0 

Offspring 2 1 1 0 0 1 0 1 0 0 

          

Figure (5) Single-Point Crossover 
 
 
 

  2-Point Crossover. 
Individuals (parents) are cut at two randomly selected positions and exchange of bits 
is made between both the inner portion between the two points or outer points as 
shown in Figure (6)  
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Parent 1 1 
 

0 1 0 0 1 1 0 0 

Parent 2 1 1 0 0 1 0 0 1 0 

          

Offspring 1 1 1 1 0 0 1 0 1 0 

Offspring 2 1 0 0 0 1 0 1 0 0 

          

 
Figure (6) Two-point crossover 

 



Genetic Algorithm Applications in Structural Engineering

 

-9 - 

  Multi-Point Crossover. 
More than two points are selected between them; the string bits of the parent 
chromosomes are then cut and exchanged. 
 
 Variable to variable Crossover. 
At first the overall chromosome is decomposed into substrings representing different 
design variables. Single point crossover is then performed between each 
corresponding substring.  
 
 Uniform Crossover. 
Uniform crossover generates random bit string of the same length of the parents 
chromosome called the crossover mask. The new child is then generated such that at 
positions where there is 1 in the mask, genes are carried from the first parent, and at 
positions where musk contains 0, genes are copied from the second parent. The 
second child individual can be created using another new mask or by using the 
complementary of the first mask. 
 
For real coded GA, several crossover techniques are available such as the arithmetic 
cross over, guaranteed average cross over, and heuristic cross over (Arfiadi and Hadi 
(2000). Evaluation of different crossover techniques used in genetic algorithm were 
evaluated via the application to steel truss optimization problems by Hasancebi and 
Erbatur (2000). Single point crossover, two point crossover, multi-point crossover, 
variable to variable crossover and uniform crossover are the first five techniques that 
were first illustrated and evaluated. Two truss sizing optimization (the traditional ten 
meber plane truss and 25-bar space truss) with two load cases for each were examined 
to illustrate the efficiency of the evaluated and suggested techniques. The developed 
computer program called GAOS (Genetic Algorithm in Optimization of Structures) 
uses the roulette wheel selection in binary coded GA with crossover and mutation 
probability 90 percent and 0.5 percent, respectively. The two point crossover 
technique was reported to be the best technique in exploiting the solution of problems 
among the tested five traditional techniques. Two additional techniques were 
developed as a result of the analysis of previous results. The first technique called the 
mixed crossover at which the 3-point crossover is first performed to achieve a 
thorough exploration of the design space, then the single-point crossover is applied to 
dominate an increased exploitation search, and finally the 2-point crossover is 
activated to provide fully exploitation search. The direct design variable exchange 
crossover is also suggested in which each design variable (substring) is directly and 
separately exchanged between paired individuals according to a probability function. 
In addition to the previously discussed truss examples, another large example of 72 
bar space truss problem was investigated to evaluate previous and proposed 
techniques. The proposed methods of crossover proved good estimation of the 
optimum solution with emphasize on the direct design variable exchange as the 
method that produced the best solution. 
 
Mutation: The mutation operator as shown in Figure (7) introduces new genetic 
structures in the population by randomly changing some of its building blocks, 
helping the algorithm escape local minima traps (Hamada et al (2002)) 
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Before 
Mutation 

1 0 1 1 0 0 1 0 0 1 0 1

             

             
After 
Mutation 

1 0 1 1 0 0 1 0 0 1 1 1

             

Figure (7) Mutation 
 

2.3. Genetic Algorithm as an Optimization Technique 

Optimization, as shown in Figure (8), is defined as the process of adjusting the inputs 
to or characteristics of a device, mathematical process, or experiment to find the 
minimum or maximum output or result (Haupt and Haupt (1998)). The input 
consists of design variables, the process is known as the cost function, objective 
function or fitness function, and the output is the cost or fitness. 
 
 

 
Figure (8) Diagram of optimization process (Haupt and Haupt (1998)) 

 
 
 

Among the categories of optimization problems shown in Figure (9), the structural 
optimization problems have their special nature. The main features of engineering 
optimal design problem can be demonstrated as: 
 

 The design variables of structural optimization problems may be 
continuous such that they can have any value in the domain as encountered 
in the problem of shape optimization of structures for which the 
coordinates of joints can occupy any coordinates. On the other hands, most 
of problems encountered in the field have discrete design variables. As an 
example, reinforcement bars have specific commercial diameters and 
structural steel sections are limited to specified tables. 
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 Most of structural optimization problems are heavily constrained. Several 
limits are specified for stiffness, strength and stability conditions 

 
 The structural optimal may be single-objective or multi-objectives. For 

several cases of optimal steel design are single objective concerning the 
minimization of total structure weight (Baumann and Kosty (1999)). 
Multi-objective application frequently arisen as the optimization of 
Minimum Weight and  minimum Strain energy done by (Cheng and Li 
(1997)) and the optimization in terms of the minimization of maximum 
peak displacement, the minimization of maximum peak acceleration, and 
the minimization of maximum peak rotation presented by Ahlawat and 
Ramaswamy (2003).  

 
 

 
 

Figure (9) Categories of optimization algorithms (Haupt and Haupt (1998)) 
 
 

Methods have been are derived for performing optimization that can be categorized 
into mathematical programming, optimality criteria and heuristic search as follows: 
 

 Mathematical programming as Sequential Quadratic programming (SQP). 
To apply linear programming techniques to structural optimization, the 
relationship between the objective function and the constraints to the 
design variables have to be linearized. Application of the conditions 
necessary for solving nonlinear optimization problem is extremely difficult 
for most problems. The calculation of gradients and the solution of the 
correlated nonlinear equation are another difficulty. (Camp et al (1998)) 

 
 Optimality criteria methods. Typically, OC methods are based on 

continuous design variables. For the case where discrete variables are 
desired using OC methods A two–step procedure is typically used. First 
the optimization problem is solved using continuous variables. Second, a 
set of discrete values are estimated by matching the values obtained from 
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the continuous solution which may shift the solution from optimum. 
(Camp et al (1998)) 

 
 Heuristic search methods. In field of standard solution techniques for 

multi-objective or even single objective optimization, several factors; as 
large number of integer or binary variables, nonlinearity, stochasticity, non 
standard underlying utility functions and logical or non standard 
constraints and feasibility conditions complicate the solution of such 
problem. Although, these complications make the solution of optimization 
in specific problems using conventional methods so hard, the development 
of new techniques such as the meta-heuristics and evolutionary algorithms 
provides powerful tools to overcome such difficulties (Jones et al (2002)).  

 
As the problem of structural optimization is discrete, constrained, multiple design 
variables, and having too many local optima, the heuristic search methods are optimal 
solution of such problems. Traditional mathematical methods usually fail to find 
robust solution of problems including the mentioned difficulties. An important aspect 
of genetic algorithms is that it is not necessary to know in advance how to solve a 
problem, it is only necessary to know how to rate potential solutions. This makes the 
genetic algorithm constitutes a powerful tool to deal with the optimum structural 
design problem which make more techniques were applied (Wang and Tai (2004)) 
and tools were developed to apply the GA concept to engineering optimum design 
problems (coello and Christiansen (1999)). The procedure used for genetic algorithm 
optimization is shown in Figure (10). Genetic algorithms are different from more 
normal optimization and search procedure in different ways (Tesar and Drzik 
(1995), Goldberg (1989), Haupt and Haupt (1998)) 
 

 GA work with a coding of the parameters not the parameters themselves 
 

 GA search from a population of points not a single point and thus makes 
the search space more wide. 

 
 GA use Payoff (objective function) information, not derivatives or other 

auxiliary knowledge which may be so difficult in some situations. 
 

 Optimize with discrete or continuous design variables 
 

 GA use probabilistic transition rules, not deterministic rules. 
 

 Provides a list of optimum solutions not a single one which gives the 
decision maker the flexibility to select from especially in multi-objective 
optimization at which the objectives to be achieved over these criteria may 
conflict with each other. In this case, no single ideal solution 
simultaneously satisfying the decision maker across all criteria (Jones et al 
(2002)). 
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Efficiency, reliability, accuracy and Robustness are common terms used to evaluate 
optimization techniques. Such terms can be defined as: (Chen and Rajan (1999) 
 

 Efficient: A methodology is defined as being efficient if it finds an 
acceptable solution with minimal computational effort. 

 
 Reliable: A methodology is defined as being reliable if it finds an 

acceptable solution regardless of the problem nuances or the starting point 
used. 

 
 Accurate: A methodology is defined as being accurate if it finds the best 

possible solution to a problem. 
 

 Robust: A methodology that is generally efficient, reliable and accurate. 
 

 

 
Figure (10) Optimal Design Process Using Genetic Algorithm (Coello et al (1997)) 

 
 

Structural design problems are usually heavily constrained as stresses, displacements, 
geometry and many other aspects of structures are subjected to constraints (Jenkins 
(1997)). In a highly constrained optimization problem such as structural optimization, 
maintaining feasibility can be a bottleneck for genetic search, and hence some sort of 
relaxation of constraints in the early stage of search is recommended (Smith and Tate 
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(1993)). Dealing with constraints is an important issue that attracts research to derive 
methods that make sure of feasibility of the final solution. A simple procedure can 
takes place as suggested by Goldberg (1989) by checking to see if any constraint is 
violated. For solutions that satisfy the constraints, fitness value is assigned while no 
fitness is assigned to infeasible solutions. The most common method of dealing with 
constraints for structural optimization problem is the penalty function method in 
which the constrained problem is transformed to unconstrained one by associating a 
cost or penalty with each constraint violation. If the original problem is defined as  
 
Minimize   )(xg  

Subject to  )(xbi    0  i = 1, 2, 3, …  ,n 

 
The problem can be transformed to be in the form 
 

Minimize   



n

i
i xbrxg

1

)]([)(  

 
Where  is the penalty function and r is the penalty coefficient. Penalty functions are 
extensively derived and penalty coefficients are adjusted for constrained optimization 
problems (Crossley and Williams (1997)). Another method can be used to handle 
constraints, especially in case that the feasible region is very narrow and almost all 
individuals violate the constraints. The method is called the "pulling back method" in 
this method, when an individual violates constraints, this individual is moved is 
moved to the point that satisfies constraints (Hiroyasu et al (2002)) 
 

2.4. Genetic Algorithm as an Evolutionary Strategy 

Evolutionary algorithms are different computer algorithms based on the process of 
natural evolution. They imitate the biological evolution in nature and follow the 
concept of the survival of the fittest. The major kinds of evolutionary algorithms can 
be summarized as:  (Lagaros et al (2002), Hrstka et al (2003), Jones et al (2002))  
 

 Evolutionary Programming 

 Genetic Algorithms  

 Evolution Strategies.  

 Differential Evolution 

 Simplified Differential genetic algorithm 

 Simulated annealing (emulates the way in which a material cools down to 
its steady state) 

 Integer Augmented Simulated Annealing (IASA) (a combination of integer 
coded genetic algorithm and simulated annealing) 

 Real-coded augmented simulated annealing (RASA ) (a combination of 
real-coded genetic algorithm and simulated annealing) 

 Tabu Search draws in the social concept of 'taboo' 
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Genetic Algorithms are the most widely used type of Evolutionary computation 
methods as the evolution strategies, evolutionary programming and genetic 
programming. A wide survey including 115 articles concerned with the theory and 
application of multi-objective optimization using the so called meta-heuristics 
including genetic algorithms simulated annealing and tabu search has been performed 
by Jones et al (2002). Figure (11), which demonstrates the frequency of articles 
collected in the period 1991-1999 in the three mentioned fields, illustrates the increase 
of developments indicating rise in their popularity. 
 

 
 

Figure (11) Article Frequency in the Period 1991-1999 in filed of Genetic Algorithm, 
Simulated Annealing, and Tabu Search (From Jones et al (2002)) 

 
 

The categorization of collected articles by field of application is shown in Figure (12). 
Theoretical developments, which establish the basis of the theoretical foundations of 
the methods and develop the required procedures constitutes the majority of works as 
result of that such techniques are relatively new. After that, growing application to all 
field including civil, mechanical, electrical and industrial engineering is observed in 
addition to medical, environmental, and information technology applications. 
 

 
Figure (12) Break down of articles by application area in filed of Genetic Algorithm, 

Simulated Annealing, and Tabu Search (From Jones et al (2002)) 
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The following figure illustrates that the majority of applications surveyed are carried 
out using the genetic algorithm technique. While 70 percent of the articles utilize 
genetic algorithm, only 24 percent and 6 percent of articles use simulating annealing 
and tabu search, respectively. The distribution shown in Figure (13) reflects the 
popularity and flexibility of genetic algorithm as optimum search technique. 
 
 

 
 

Figure (13) Break down of articles by primary method in filed of Genetic Algorithm, 
Simulated Annealing, and Tabu Search (From Jones et al (2002)) 

 
 
Points concerning the strengths and weaknesses when applied to multi-objective 
optimization are also summarized. The main advantages of meta-heuristics are that 
these methods are mainly discrete as opposed to the conventional methods which are 
continuous in nature. The range of models developed in the area of meta-heuristics is 
another advantage over the other conventional methods which gives the methods 
generality and flexibility. Disadvantages reported for meta-heuristics are that the 
methods are not function optimizers that are aimed at finding good solution and not 
the guaranteed optimal solution. This disadvantage is does not add merits to 
conventional methods as the article reviewed deal with complex real world systems 
for which no guaranteed conventional solution exists. The sensitivity of meta-heuristic 
methods to large number of parameters set by the modeler is another disadvantage 
which makes the methods as poor black box more difficult to apply. The need to 
develop analysis techniques for the meta-heuristic methods for sensitivity analysis, 
Pareto efficiency checking and redundancy checking is certified. The majority of 
these techniques already exist for conventional methods.  
 
Hrstka et al (2003) carried out a comparison of several stochastic optimization 
algorithms for the solution of some problems arising in civil engineering. The 
introduced optimization methods are: the integer augmented simulated annealing 
(IASA), the real-coded augmented simulated annealing (RASA), the differential 
evolution (DE) and simplified real-coded differential genetic algorithm (SADE). Each 
of these methods was developed for some specific optimization problem; namely the 
Chebychev trial polynomial problem, the so called type 0 function and two 
engineering problems; the reinforced concrete beam layout and the periodic unit cell 
problem, respectively. Detailed and extensive numerical tests were performed to 
examine the stability and efficiency of proposed algorithms. The results of our 
experiments suggest that the performance and robustness of RASA, IASA and SADE 
methods are comparable, while the DE algorithm performs slightly worse. This fact 
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together with a small number of internal parameters promotes the SADE method as 
the most robust for practical use. Another iterative methods based on evolution were 
presented (Manicharajah and Steven (2000)). Other categories of genetic algorithm 
are evaluated and used to improve the convergion such as the genetic algorithms with 
punctuated equilibria defined as GA for which multiple populations are allowed to 
develop independently of each other and performing the genetic algorithm operations 
on each. Then migration is allowed by letting individuals selected randomly weighted 
by their fitness to be exchanged between once every certain number of generations 
(epoch) (Ignat (1998)). 
 

3. STRUCTURAL AppLICATIONS OF GENETIC ALGORITHMS 
 
Several characteristics exist in the structural design problem make the use of genetic 
algorithm suitable for structural engineering optimization which can be listed below 
(Nanakorn and Meesomklin (2001)): 
 

1. In structural engineering optimization, the global optimum is always searched.  
 

2. Design variables in engineering design are generally discrete 
 

3. Structural optimization problem always contains constraints. 
 
Experience with GA has indicated that more often than not, tuning the GA strategy 
and parameters can lead to more efficient solution process for a class of problems 
(Chen and Rajan (1999)). The simple GA while powerful is perhaps too general to be 
efficient and robust for structural design problems due to several reasons. First, function 
(or, fitness) evaluations are computationally expensive since they typically involve 
finite element analysis. Second, the (feasible) design space is at times disjointed with 
multiple local minima. Third, the design space can be a function of Boolean, discrete 
and continuous design variables. The existence of large number of design variables 
and constraints is an important difficulty that makes the feasible region is very narrow 
(Hiroyasu et al (2002)). In this section different applications of genetic algorithm to 
structural engineering are discussed. At first, statistics of the current literature is 
carried out to demonstrate the distribution of studies along last 10 years and the 
amount of work done in each field. A review of available literature categorized 
according to the field of application is then presented.  
 

3.1. Statistics of Literature 

The development of applications of genetic algorithms in the field of structural 
optimization is illustrated in this section. Figure (14) shows the frequency of structural 
applications using genetic algorithm during the last 10 years. It can be easily observed 
from the figure that the number of studies, at general, increases in last years such that 
more studies are observed during year 2004 than any previous year. It can be 
concluded that the interest of researchers on the genetic algorithm application 
increases and that extensive future work is expected. 
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Figure (14) Frequency of Applications of Genetic Algorithm in Structural 
Optimization During the Last 10 Years 

 
Break down of articles in structural optimization using genetic algorithm by the field 
of application is shown in figure (15). Four categories are considered constituting the 
main fields found in literature. As shown, steel design attracted the majority of studies 
such that 47% of work done was in field of steel frame and truss design. The rest of 
work is divided by other fields such that the design of concrete structures, structural 
models, composites and structural control show comparable divisions. The 
domination of steel design on other fields can be attributed to the nature of steel 
design problem in addition to that the early work on genetic algorithm structural 
optimization used the design of steel truss as bench mark problem 

 
 

Steel
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Concrete
12%
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17%
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14%

Control
10%

 
 

Figure (15) Break Down of Articles By the Field of Application 
 

To illustrate the development and growth of genetic algorithm applications in 
structural optimization, Figure (16) shows the frequency of articles by the filed of 
application during the last 10 years. Comparing the early works in 1994 and later with 
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the last years certifies the growth of application fields. In 1994 and later, design of 
steel structures is only studied by all research work while in 2004, all the five 
categories considered are present. In between and along the 10 years considered, the 
fields of application increases which illustrate the large development in the field of 
structural optimization using genetic algorithm.  
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Figure (16) Frequency of Articles by Field of Application of genetic Algorithm 
During the Last 10 Years 

 
 

3.2. Design of Steel Structures 

Steel structure optimization is common as total weight optimization problems. With 
respect to design variables, sizing optimization, shape optimization, and topology 
optimization are common terms. The sizing design variables considered are either 
cross-sectional dimensions or available cross-section. The former can be described 
using continuous design variables since these dimensions can vary continuously. The 
latter is described in terms of integers (an integer index that points to a row in a table 
of available cross-sections). The table search is carried out by using a table of ordered 
available cross-sections with the lower and upper bound candidate cross-sections 
specified by the user. The shape design variables are the nodal locations. These are 
real design variables. The topology (boolean) design variables can be structural 
parameters such as the presence or absence of members, and presence or absence of 
fixity conditions at supports or connections. Chen and Rajan (1999). Genetic 
algorithms were also incorporated into an environment for optimum design of plane 
frames by Jenkins (1992) and illustrated by an example of cable stayed bridge. 
Genetic programming was reported to be less problem dependent when applying to 
steel truss examples (Yang and Soh (2002)) 
 
 
Rajeev and Krishnamoorthy (1992) applied the concept of genetic algorithm to 
optimal design of different steel truss examples. Minimization of total weight was 
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considered as the target objective function while penalty was applied to take the 
constraint violation into account. The merits of using genetic algorithms as 
optimization tool for problems including discrete variables and its generality and 
ability to apply to design of steel trusses were discussed and verified (Coello (1994), 
Coello et al (1994)). Maher et al (1995) presented a gene approach to demonstrate 
design exploration as compared to search and applied the approach to the design of 
braced steel frames for buildings.  
 
A procedure was developed for the combined sizing (Camp et al (1998)), shape, and 
topology design of space trusses (Rajan (1995)) defined by: 
 

 Sizing: Cross sectional area of members was used as discrete or 
continuous values. 

 
 Shape: Nodal coordinates are continuous design variables using hybrid 

natural approach. 
 

 Topology: Boolean Design variables represented the existence, 
connectivity and support conditions of nodes.  

 
Additional concepts were incorporated to accelerate conversions and reduce the 
computational effort. Large penalty terms were applied to the unstable structures and 
structures with no deformations while penalty coefficients were applied to structures 
whose performance constraints are not satisfied. In order to find better solutions, 
restarts were also used by generating the entire population randomly or letting the user 
specify the initial design variables. Zero force members are omitted from fitness 
calculations and chromosome history was saved and checked to avoid the fitness 
calculation of repeated chromosomes to reduce computation effort. 
 
Cheng and Li (1997) presented a methodology of constrained multiobjective 
optimization problems (MOP) by integrating a Pareto genetic algorithm and a fuzzy 
penalty function method. The Pareto genetic algorithm proposed consists of the Pareto 
set filter and the niche as two additional operators in addition to the reproduction, 
crossover, and mutation to constitute five parts system. The Pareto set filter was 
applied to pool non-dominated points ranked 1 at each generation and drop dominated 
points in order to stop the loss of Pareto optimal points. Ranking was applied as a 
continuous labeling process such that at each generation non-dominated points (Pareto 
set) are selected and assigned rank 1. From the remaining population non dominated 
points are identified and assigned rank 2 and this process continues for rank 3, 4 and 
so on until the entire population is ranked. The feasible vector x* is defined to be a 
Pareto set if and only if there exists no feasible vector x such that  
 

)()( *xfxf ii    for all      ),........,2,1( mi   

and 
)()( *xfxf ii    for at least one     ),........,2,1( mi   

 
Pareto sets are solution for which no objective can be improved without detracting 
from at least one another objective. Any point in a pare to optimal set can become an 
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"optimum solution" depending on the decision-makers opinion as MOP has no unique 
optimum that can simultaneously optimize all objectives as shown in Figure (17). 
 

 

 
 

Figure (17) feasible Rejoin and Pareto set in objective space Cheng and Li (1997) 
 
 
Niche technique prevents genetic drift and significantly distributes a population 
uniformly along a Pareto optimal set. In such technique an offspring replaces its 
parent if the offspring's fitness exceeds that of the inferior parents. This niche 
technique prevents the formation of a lethal and the reproduction of procedure is a 
steady state one. The revised penalty function method was reported to fail to work 
properly in a Pareto GA for constrained MOP. Thus, a fuzzy logic penalty function 
method was developed with a combination of deterministic, probabilistic and vague 
environments that are consistence with GA operation theory based on randomness and 
probability. Constraints were incorporated by the rules that (1) point's status as 
feasible or infeasible should be indicated by the function; (2) closer points to feasible 
zone will have more fitness; and (3) points closer to Pareto optimal set is assigned 
higher fitness values. Genetic algorithm with uniform crossover, crossover probability 
of 60 percent and mutation probability of 1 percent was applied. Sample cases of 4-
bar pyramid truss, 72-bar space truss with two criteria (Minimum Weight, Minimum 
Strain energy) and four-bar truss with three criteria (Minimum weight, Minimum 
Deflection of two load cases). Weight minimization was achieved by using population 
size of 400 individual and chromosome length 60, 240, and 60 for the tree studied 
examples, respectively. For the second illustrated example shown in figure (18), the 
Pareto set filter identified the Pareto set shown in figure (19). it is clear that the most 
optimum design for weight (min. W) results in high strain energy while the most 
optimum design for energy (min. E) leads to unsatisfactory weight. The optimum 
solution of the problem (min. (W, E)) can be decided by the judgment of decision 
maker according to the relative importance of each objective. Numerical results 
certified that the Pareto GA applies is a powerful tool for a constrained MOP efficient, 
robust and exhibits global conversions. 
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Figure (18) 72–Bar Space truss example (Cheng and Li (1997)) 
 
 

 

 
 

 
Figure (19) Pareto Set Filter at Generation 500 of Revised Niche Method (Cheng and 

Li (1997))  
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Several techniques were applied also to optimum design of structures and illustrated 
by application to steel trusses as the data envelopment analysis (Arakawa et al 
(1998)). The development and implementation of genetic algorithm based 
methodology for automated design of discrete structural systems was presented by 
Chen and Rajan (1999). Consideration of sizing, shape and topology optimal design 
of frames subjected to static and dynamic loads were carried out. Enhancements were 
made to the simple GA to increase the efficiency, reliability, and accuracy of the GA 
methodology for code-based frame design. Constraints were considered through an 
adaptive penalty function for which penalty weights are computed automatically and 
adjusted in an adaptive manner. Uniform crossover, tournament selection and elitist 
approach was used in reproduction of the applied binary coded GA with population 2n 
where n is the chromosome length. Two numerical examples were presented and 
solved using the proposed enhanced GA with crossover probability of 90 percent and 
mutation probability 3 percent. For the first example which constitutes a roof truss, 
the optimized weight was reported to decrease by 20 percent less than previous 
studies in case of sizing and 40 percent in case of adding topology optimization as 
result of the application of procedure enhancements in addition to reducing the 
computation time by about 13 percent. Comparisons with results from prior 
applications and solution of other examples proved that enhancements made to the 
GA adds well to the efficiency and robustness of the system 
 
 
A technique for conditioning the components of the fitness statement using ranking 
and a graphical method for monitoring components of the rank based fitness function 
was presented and applied to the problem of design of steel structures(Voss and Foley 
(1999)). By utilizing generationally dependant non-linear rank based selection along 
with translocation crossover and intelligent mutation to maintain genetic diversity, the 
proposed algorithm was able to operate directly on a heuristic tree representation of 
the design variables. Performance and control of the evolutionary algorithm was 
demonstrated and discussed via a cantilever column example problem. The 
implementation of translocation and macro crossover was reported to be the main 
motivation for this study and the proposed evolutionary algorithm over the traditional 
genetic algorithms. Authors presented a general evolutionary algorithm where upon 
the solution space is effectively explored through probabilistic reproduction and fair 
participation of fitness function components throughout the evolutionary process. A 
graphical method for interactive algorithm tuning was also developed which allows 
the user’s intuition to be readily incorporated into the selection process. The proposed 
enhancements were applied to the optimization of three dimensional, ten-segment, 
rectangular cantilever column for which the volume was considered as the objective 
function to be minimized. Constraints were introduced using penalty function 
concerning deflections, stiffness and shape in two directions. Two design variables are 
the dimensions of segments (hx and hy) were considered for each of the ten segments 
and the values for these variables are assumed to take on discrete quantities and thus, 
the problem contains 20 discrete design variables. The results indicated that the 
proposed evolutionary algorithm will scale well and allows a great deal of flexibility 
to deal with the complexities of multi-constraint optimization. It was emphasized that 
traditional binary representation is still possible, but may not be necessary depending 
on the problem and type of translocation crossover and mutation applied.  
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The optimum design of truss structures was implemented using genetic algorithms 
and compared with mathematical programming method by Coello and Christiansen 
(2000). Compared with the best results in literature, as applied to two problems of 25-
bar space truss and 200-bar plane truss, GA proved to generate better trade off and 
can be used as reliable numerical optimization tool. An adaptive penalty scheme that 
is free from the disadvantages of conventional penalty coefficients assignment was 
developed by Nanakorn and Meesomklin (2001). The proposed penalty function 
was reported to be able to adjust itself during the evolution in such a way that the 
desired degree of penalty can be always obtained. The parameter used to justify the 
penalty weight was suggested as the ratio between the fitness value of the best 
infeasible members and the fitness value of the average feasible members. 
Application of the technique to several benchmark truss and frame problems certified 
the stability and robustness of the proposed methodology. The proposed method 
proved also that the solution is independent on the units used.       
 
Krishnamoorthy et al (2002) discussed the object-oriented design and 
implementation of genetic algorithm core library consisting of all the genetic 
algorithm operators having an interface with the genetic objective function. Strategies 
were also suggested for member grouping for reducing the problem size. The concept 
of building such framework was based on the division of the genetic algorithm into a 
problem-independent genetic operations part and a problem dependent function 
evaluation part linked by the coding scheme and fitness evaluation. The developed 
framework called GALiLEO (Genetic Algorithm Library for Learning and 
Engineering Optimization) contained all commonly used selection, crossover, penalty 
handling and sharing procedures that can be linked to a variety of objective functions. 
Instead of using an external finite element program to perform the required analysis 
with file link with the framework, the framework was integrated with a specially 
developed finite element program, PASSFEM (Program for Analysis of Structural 
Systems using the Finite Element Method). The implemented library was tested on a 
number of large previously fabricated space trusses and the results were compared 
with previously reported values. Authors concluded that genetic algorithms 
implemented using an efficient and flexible data structure can serve as a very useful 
too in engineering design and optimization. 
 
Genetic algorithm optimization procedure was applied to weight optimization of steel 
plane frames subjected to different load cases by Torregosa and Kanok-Nukulchai 
(2002). The scope of this study is limited to the weight optimization of plane frames 
under a specified loading. Discrete design variables are the standard commercial steel 
sizes for which a database of steel beam sizes is provided as the discrete variables. 
This work was reported to concern with the linear elastic analysis of the 2-
dimensional frame and designing the members following the allowable stress design 
(ASD) procedure on the AISC code provisions. Only the member of the 
superstructure is subjected to optimization. Both elitist and non-elitist search 
procedures are used to optimize the total weight of steel frames. Crossover types used 
are 20- and 50-percent uniform. Single objective function (Weight) was used and 
constraints are incorporated into the fitness via penalty function representation. The 
procedure of suggested genetic algorithm optimization is shown in the flowchart of 
Figure (20).  
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Figure (20) genetic optimization procedure (Torregosa and Kanok-Nukulchai 

(2002)) 
 
Optimization result using population sizes 10, 20, and 40 are compared. Elitist search 
procedure showed superior results when compared to non-elitist for higher population 
sizes search because of its faster convergence rate. Two examples of 3-bay 6-story 
frame and 3-bay 3 story frames was introduced to illustrate the performance of the 
suggested methodology. Performance of non-elitist is superior when using lesser 
population sizes. To examine the performance of genetic algorithms, case studies are 
conducted by varying material groups and the results are compared with the results 
from other optimization techniques. Genetic optimization showed superior results 
when compared to other techniques especially to problems with few material 
groupings. 
 
Lagaros et al (2002) investigated the efficiency of different evolutionary algorithms 
(EA) when applied to large scale structural sizing optimization problem. Hybrid 
methodologies combining genetic algorithms, evolution strategies and mathematical 
programming method of sequential quadratic programming (SQP) are also tested. The 
proposed hybrid approach was first applied to the academic problem of minimizing 
the volume of the three-bar truss and then applied to the minimization of weight of 
two practical steel frame examples. The first example is six story space set back frame 
containing 63 elements and 180 DOF subjected to gravity and lateral loads while the 
second is 20 story space frame contains 1020 members and 2400 DOF subjected to 
vertical and lateral loads. The proposed hybrid approach proved to be robust and 
efficient for structural optimization and that GA-SQP and ES-SQP converge well at a 
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reduced computational effort compared to the SQP procedure. GA-SQP are reported 
to be so efficient in case of problems with bad initial designs due to the fast 
convergence GA toward the neighborhood of optimum   
 
A methodology of optimum shape design of skeletal structures using genetic 
algorithm is proposed by Shrestha and Ghaboussi (1998). The generated structure 
can contain truss or beam elements or both and supports may be fixed, hinged or 
roller. Sizing, geometry and topology are the three aspects considered simultaneously 
in the proposed methodology. The evolved structure can acquire any shape within the 
physical design space provided that (1) the structure have any number of free nodes, 
fixed nodes or partially fixed; (2) members are chosen from set of discrete member 
sizes and (3) the structure may be subjected to static or moving; single or multiple 
loads including self weight of the structure. Weight of the structure is considered as 
the design objective function to be minimized with constraints including stress limits, 
slenderness ratio, minimum member length, maximum member length, member 
symmetry, node displacement and nodal symmetry. Binary coded genetic algorithm is 
used with multiple points crossover are customized in the proposed methodology. The 
proposed methodology is applied in two truss examples spanning 70 meters with 
different heights for optimum weight. Due to the complexity of the problem and the 
huge number of design variables encoding of the example problem contains too many  
digits as binary string reaching 25200 bits. Design variables included node and 
member information. Node information includes nodal active/inactive, nodal 
coordinates and support type. Member information includes member active/inactive, 
sector priority, member type and connection type. The space around each node was 
discretized into number of sectors, each possessing specific set of member properties 
and a measure of its priority with respect to other sectors as shown in Figure (21). The 
string representing the structure was made up of a fixed number of identical 
substrings, each corresponding to a specific node and member as shown in Figure 
(22).  
 

 
 

Figure (21) Sectorial representation of Topology (Shrestha and Ghaboussi (1998)) 
 



Genetic Algorithm Applications in Structural Engineering

 

-27 - 

 
 

Figure (22) string representation scheme (Shrestha and Ghaboussi (1998)) 
 
 
The optimum design is reached after 5400 and 9754 generations for both examples. 
The Weight-Generation relation and history of evolved shape during the genetic 
algorithm execution for the first example are shown in Figures (23 and 24) 
 
 

 
 

Figure (23) Weight-Generation cost profile of Example (1) (Shrestha and Ghaboussi 
(1998)) 
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Figure (24) History of Evolver Shapes of Example (1) (Shrestha and Ghaboussi 
(1998)) 

 
A fuzzy augmented lagrangian GA has been presented for optimization of steel 
structures subjected to the constraints of the AISC allowable stress design 
specifications taking into account the fuzziness in the constraints (Sarma and Adeli 
(2000)). The membership function for the fuzzy domain is found by the intersection 
of the fuzzy membership function for the objective function and the constraints using 
the max-min procedure of bellman and zadeh. Nonlinear quadratic fuzzy membership 
functions are used for objective function and constraints. One of the objectives in the 
work is to model the effects of imprecision, uncertainty, or fuzziness in addition to 
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improving the convergence and efficiency through the use of fuzzy set theory in the 
formulation of a GA-based structural design optimization problem. 
 
The algorithm was applied to optimum design of two space axial-load structures. The 
first is a 72-member space truss subjected to two loading conditions for which the 
optimum solution obtained by the simple and the fuzzy Gas are 1.6564kN (372.40 lbs) 
and 1.6208 KN (364.40 lbs) in 2,776 and 1,758 generations, respectively. The second 
is a large 37-story structure with 1.310 members, 332 nodes and 105 groups of 
members steel space truss as shown in Figure (25). For that example, minimum 
weight of 4,093.0 kN  (920.2kips) s been obtained using the simple augmented 
lagrangian GA after 2,639 iterations using 400 populations of design variables as 
shown in Figure (26).  
 
 

 
 

 
Figure (25) 1310-Member Steel Space Truss (Sarma and Adeli (2000)) 
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Figure (26) Design histories for simple and fuzzy GAs for optimization of 1,310-
member steel space truss (Sarma and Adeli (2000)). 

 
 

Jenkins (1997) developed adaptations to the standard Genetic algorithm by the 
development of a space condensation heuristic which progressively reduces the size of 
the multidimensional space being searched leading to more economic application. 
Adaptations include controls and the type of penalty function used for design 
constraints. The enhancement of procedure control has been carried out by using 
heuristics to update the parameter value selections (PSELS) during the application of 
the algorithm generation after generation. By assigning weights to design variables 
that lead to the highly and poorly fit objective function (+1 for highly fit and -1 for 
poorly fit), and as the processing continues, the record is expected to indicate any 
trends in selection. Another adaptation was carried out in the application of penalty 
function which was suggested to relate the value of penalty function to the extent of 
constraint violation in the form: 

 
 

mdkP )(  
Where  
d  = q/a    for q>a  
d = a/q    for a>q  
a is the value of constraint 
q  is the allowable value of constraint 
k, m  are justification problem dependent factors 
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The adapted procedure was applied to the design of multistory space frame for 
minimum volume under the BS5950 design constraints. Population size of 50 and 
maximum number of generations of 100 are used to perform 10 different analysis 
using the standard and the suggested adaptive technique. More optimal volumes are 
obtained when applying the adaptive technique indicating the importance of space 
condensation heuristics in improving the processing time needed. On the other hands, 
less importance has been assigned to the adaptivity of controls and the constrained 
handling strategy. 
 
Genetic algorithms were presented and applied to real-world truss examples with 
discrete practical sections available in market by Galante (1996). To cope with 
practical considerations, minimization of the number of cross section types is applied 
as an optimization criterion in addition to the minimization of the truss weight. Shape 
optimization is also considered in the developed GA which applies the two point 
crossover to binary coded chromosomes. The constraint related to the elastic and 
plastic buckling is also applied in addition to stress and displacement limits. The 
genetic algorithm proposed was applied to the optimization of the traditional 10 bar 
truss shown in Figure (3) and another 160 bar transmission tower. For the 10 bar truss 
example, different situations are considered concerning the consideration of buckling 
constraint, minimization of the number of cross sections, and the shape optimization. 
As compared to previous studies (Goldberg and Santani (1986), Rajeev and 
Krishnamoorthy (1992)) and others), the suggested procedure proposed less weight 
in case of the same constraints and objectives for both examples.  
 
A comparison between the genetic algorithm evolution strategy simulation and 
random cost method was applied to the topology optimization of trusses by Baumann 
and Kosty (1999). Random cost turns out to be an optimization method with 
attractive features. In comparison to the genetic algorithm approach previously 
defined, random cost turns out to be simpler and more efficient. Furthermore it is 
found that in contrast to evolution strategy, the random cost strategy’s ability to find 
optima is independent of the initial structure which is related to the important capacity 
of escaping from local optima. The structural total weight was considered as the 
single objective (cost function) to allow for comparison. Two different truss 
optimization problems previously analyzed were investigated. The first problem is a 
well-known test case in structural topology optimization of trusses. It consists of six 
joints, two fixed supports and two loads acting simultaneously. The initial structure 
and the expected well-known optimal topology known are shown in Figure (27). Both 
methods, the GA-method and the RC-method, find this solution. In spite that authors 
reported that the genetic algorithm procedure was not able to find the global optimum 
directly for the second problem, it was reported that when using completely connected 
initial structure, global optimum can be obtained. 
 
Examples previously discussed by Galante (1996) and Rajeev and Krishnamoorthy 
(1992), and others are again optimized by Turkkan (2003). A floating point genetic 
algorithm proposed for optimizing structural systems with discrete design variables 
was applied to them. The new concept proved to converge to a better solution when 
compared to the binary coded genetic algorithms of the mentioned studies. 
Tournament selection is applied to the genetic algorithm developed in C++ language 
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with whole linear crossover and non uniform mutation. The proposed GA was applied 
to the solution of the traditional 10 bar plane truss shown in Figure (4) and solved in 
the previous studies (Galante (1996), Rajeev and Krishnamoorthy (1992)). As 
indicated in the results, modifications made on the standard genetic algorithm 
procedure lead to the global minimum without the violation of displacement and 
stress constraints. Real coded probabilistic model building genetic algorithm 
(PMBGA) was investigated by Hiroyasu et al (2002) and applied to the design of 
steel trusses.  
 
 
 

 
Initial Structure 

 
Final (Optimized) Structure 

 
Figure (27) The Topology Optimization Truss Example (Baumann and Kosty 

(1999)) 
 
 
andgren and  Cameron (2002) considered the application of genetic algorithm to 
optimal structural design under the presence of variation in loading, geometry and 
material properties. A Monte Carlo simulation was embedded in a genetic 
optimization algorithm to produce an output distribution for the objective function and 
constraint functions at each design evaluation. A hybrid genetic/non-linear-
programming algorithm was used with a multi-objective formulation to locate a 
design that is optimal under the primary design criteria, but is simultaneously 
insensitive to variation. Cross-sectional, geometric and topological design changes are 
considered for which weight minimization subject to maximum stress constraints 
were considered. Specific examples presented include the famous ten bars truss 
structure and structural inner panel for an automotive. Three advantages were reported 
for the incorporated method. First, the design process accounts for realistic parameter 
variations so the design is practical rather than a mathematical abstraction that is of 
little use in the real world. Second, the design generated is less sensitive to variation 
in loading, restraints and material properties and is therefore less likely to fail in 
practice. Finally, the procedure can accelerate the global search to locate potentially 
good regions in the overall design space. The increase in computational effort is 
significant, but the results are superior to conventional approaches. 
 
In an attempt to facilitate easy applications for structural optimization using the 
genetic algorithm as optimizer, a genetic algorithm (GA) based Finite element 
analysis (FEA) procedure was developed (Ali et al (2003)) for size and shape 
optimization of planar and space trusses. Topology optimization did not been included 
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in the proposed procedure. The purposed procedure interfaces a binary GA within a 
FEA software package in order to initially test the applicability and viability of such 
integration. Cross-sectional area can be either continuous or predefined discrete. Pre-
defined discrete cross-sectional areas, their properties, constraints and design checks 
were taken from the American Institute of Steel Construction. Serviceability and 
fatigue constraints did not been included in the procedure. In addition, special features 
of the GA was included to dynamically alter the population size, and the crossover 
and mutation rate in order to facilitate faster convergence and hence reduce the 
computational effort required. Weight was specified as the objective function to 
represent cost, constraints were handled by the adaptive penalty method in which the 
GA adapted itself as search and optimization process progressed. The paper also 
brings a focus on the applicability of integrating a GA as an optimization tool within 
FEA software. The genetic algorithm was developed in MATLAB and the finite 
element code used is the commercial ANSYS program with text file interface. It was 
shown by way of many examples solved by numerous mathematical, as well as other 
heuristic approaches in the literature that the purposed methodology was reported to 
be quite efficient and capable of finding lighter and reasonable structural designs than 
that reported in the literature. Moreover, it is shown that the purposed method 
removes the immense effort required in coding ones own finite element codes by 
utilizing already existing finite element software. Nonetheless, it was found that even 
with a GA, optimization for very large problems was computationally extensive such 
that for the largest optimization model presented in the paper (i.e. the 47 bar truss 
planar tower) consumed as much as 14 h––on a Pentium III processor to optimize, 
where convergence was achieved within 100 generations. This was primarily due to 
the large number of design variables involved for this particular structure.  
 
Coello et al (1996) applied genetic algorithm for design of axially loaded non-
prismatic columns. Cross sectional shape was considered as the main design variable 
and minimum weight was used as the objective junction subjected to buckling and 
strength constraints. Fine tuning of the GA procedure were carried out to suit real 
representation and utilizing a fitness history from which selection of best solution can 
be retrieved as follows. 
 

  A certain value for the random number seed was chosen and made constant  

 Constants for the population size and the maximum  number of generations 
was chosen (400 chromosomes and 50 generations, respectively) 

 Loop the mutation and crossover rates from 0.1 to 0.9 at increments of 0.1 was 
performed (this is actually a nested loop which implied that 81 runs were 
necessary). 

 For each run, 2 files were updated. One contained only the final costs, and the 
other has a summary that includes, besides the cost, the corresponding values 
of the design parameters and the mutation and crossover rates used. When the 
whole process ended, the file with the costs is sorted in ascending order, and 
the smallest value is searched for in the other file, returning the corresponding 
design parameters as the final answer.  
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As design variables are continuous, jolting point representation was reported as the 
best solution compared with binary representation. Such representation led to more 
precision and better speed since chromosomes can be of considerable shorter length. 
The technique was succeeded to reduce the volume of steel columns up by 30% with 
respect to more traditional techniques.  

 

3.3. Design of Concrete Structures 

Rafiq and Southcombe(1998) introduced an approach to optimal design and 
detailing of reinforced concrete bi-axial columns using genetic algorithms. Optimal 
bar size and bar detailing are the used design variables of the suggested search. The 
procedure attempts to keep the sectional moment capacity and cross section and 
obtain the minimum reinforcement area leading to more economical design. The 
British standard (BS8110) was followed concerning the capacity calculation and 
reinforcement arrangement. A declarative approach was used to check the exact 
bending capacities of the section about both axis of the column. Binary coded GA was 
developed in which the chromosome lengths are dynamically selected for each 
particular design related to the column dimensions. Maximizing the Only 50 
generations with population size 50 was reported to lead to the optimum solution. 
Compared to the code design, genetic algorithm leads to optimum or very close to 
optimum bar arrangements 
 
Coello et al (1997) presented a genetic algorithm optimization model for the design of 
rectangular reinforced concrete beams subject to a specified set of constraints. The 
model considered the minimization of the cost of the beam considering the costs of 
concrete, steel and shuttering leading to practical design. Simple genetic algorithm 
was applied and results were compared to those obtained via geometric programming. 
Strength design procedure was adopted for which the ultimate concrete strain is 0.003 
and trapezoidal stress distribution was assumed. The same procedure adjusted for 
tuning of genetic algorithm procedure suggested by Coello et al (1996) was 
customized. Matou et al (2000) selected the design of reinforced concrete beam 
among selected engineering problems and verified the efficiency of genetic algorithm 
in engineering optimization problems.    
 
The optimization of construction costs of mass concrete structures such as dams, 
foundation slabs, and bridge decks was carried out by Fairbairn et al (2004). The 
proposed model used the genetic algorithm in selecting the material type, placing 
temperature, height of lifts and time interval between lifts as design variables. These 
variables control the cost of mass concrete structures which was used as the objective 
function. Coupled thermo-chemo-mechanical model was incorporated into a 3-d finite 
element code to simulate the hydration process while genetic algorithm was 
customized for optimization. Binary coded representation was performed with single 
point crossover and tournament selection together with elitism. As an illustrative 
example, the proposed model was applied to a concrete dam for small hydropower 
plant. The procedure proved to be applicable to actual design of massive structures in 
which early age cracking is a predominant design constraint.  
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A systematic approach to the reliability analysis of precast concrete structures, using 
Genetic Algorithms, was presented by Catallo, L. (2004). The problem is considered 
as an anti-optimization problem which is mathematically defined by simultaneous 
search for the highest and the lowest value, and, as previously said, for the difference 
between them. The engineering definition of the anti-optimization procedure can be 
summarized as the process to develop the best solution having in mind the worst. The 
problem was formulated in terms of safety factors and the membership function, over 
the failure interval, is searched for several defined Limit States. Due to unavoidable 
uncertainties, and knowing that the geometrical and the mechanical properties that 
define the structural problem cannot be considered as deterministic quantities, such 
uncertainties were modeled using a fuzzy theory based approach. For simplicity, 
uncertainties due to restraints did not been considered in the study.  For the 
prestressed frame case studied, the variables which influence more the structural 
response are the steel strength in the pillars, the prestressing steel strength and the live 
load in post-tensioned RC continuous beam and the prestressing force. Roulette wheel 
selection scheme was employed to the FORTRAN developed genetic algorithm 
proposed with probability of crossover and mutation of 80 and 1 percent, respectively. 
For each level of uncertainty, the reliability problem is seen as an anti-optimization 
problem, where the worst unsafe solutions are achieved using genetic algorithms. 
 
Peng and  airfield (1999) presented an integrated design optimization combining the 
mechanism method with genetic algorithms for the optimization and design of arch 
bridges. The method proposed utilizes the combination of the mechanism method 
which is one of the principal arch assessment tools and the genetic algorithms which 
are powerful numerical function optimization techniques. The mechanism method, 
which is a limit state plastic analysis which supposes a four, or five hinged 
mechanism for the arch’s collapse mode was incorporated in a simple computer 
program called (Archmech) for arch analysis. The method was proposed as a design 
aid for structural engineers involved in the assessment, maintenance and repair of 
existing bridges, or the design of new arches. Three objective functions was 
considered representing minimizing the ratio between the 1/4 span thickness (t) and 
the crown rise hc (), minimizing the total cross sectional area (A), and maximizing 
the ultimate load (P). Design variables were considered (, , ) can be defined as 
(Figure (28)): 
 
 = hq/hc is the 

4
1 -span to mid-span depth ratio 

 = h0/hc is the backfill to mid-span depth ratio  

 = hc/s  is the mid–span depth to span ratio   

 
Trials showing results from Teston Bridge, Kent and a range of other sample optimal 
arch designs were presented with associated algorithm efficiency data. The 
combination of the mechanism method with genetic algorithms were reported to prove 
successful in the quest for an optimal arch bridge design with additional usefulness for 
engineers involved in routine bridge assessment and maintenance. Groups of equally 
feasible designs, all close to the optimum solution, were produced. The optimization 
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procedures used proved computationally efficient: they all ran quickly on low 
specification personal computers.  
 
 

 
 

 
 

Figure (28) Configuration of Arch Bridge (Peng and  airfield (1999)) 
 
 

3.4. Structural Systems and Models 

Wang and Chen (1996) used the genetic algorithm approach to optimize the location 
of supports of beams for maximum fundamental eignvalue. Three boundary 
conditions are considered for which the location of three supports is optimized. 
Rayleigh-Ritz method for beam vibration analysis is used to evaluate the eign values 
which constitute the fitness function without any scaling. A 30 digit binary string is 
used to encode the problem representing each support by 10 bits allowing 1024 
different location of each support. 30 generations with population 30 individual each 
are use to make about billion (109) of support combinations. 
 
Miles et al (2001) have introduced a system BGRID for the conceptual design of 
multi-story office buildings. Conceptual design, as reported, includes grid dimensions, 
structure-services integration strategy, Environmental strategy, fire escape rules, 
spaces required for heating and mechanical plant, and clear floor to ceiling height. 
The suggested layout is based, beside the structural considerations, on lighting 
requirements, ventilation strategies, limitations introduced by available building 
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materials, and available structural systems. The determination of such components of 
conceptual design reflects the majority of costs of project construction (about 80 
percent (Miles et al (2001)). The system has a user friendly interface to be used as a 
decision support system (DSS) by architects; building services engineer, or even 
clients rather than structural engineers.  
 
Real number coded representation is selected to encode the design variables into the 
genotype chromosome which includes variable number of genes (digits) according to 
plan dimensions. The main design variables represented in the genotype are the 
coordinates of each column (x and y), structural-service integration strategy (separate, 
partially or fully integrated), environmental strategy (natural ventilation, mechanical 
ventilation or air conditioning) and clear floor to ceiling height. Separate parts of the 
genotype are assigned for the x-coordinates of columns, y-coordinates of columns and 
other factors to produce the three parts genotype illustrated in Figure (29), which 
represents six columns floor. The first six cells of the chromosome represent the x-
coordinate of columns and digits 6 to 12 represent the y-coordinates. The remaining 
three genes correspond to separate structural service, mechanical ventilation, and floor 
height 2.9 m, respectively.  
 
 

 
Figure (29) Genotype used in Miles et al (2001) 

 
 
Crossover operator is applied separately for each part of the chromosome string 
shown using single point crossover with random location and mutation is performed 
with probability of 1 percent. Fitness function of the problem includes the constraints 
which are divided into hard and soft constraints. Hard constraints as the floor height 
limit, design option structural system compatibility, and uniformity of grid are 
considered through the use of penalty functions. The objectives of optimization are 
weighed by the user to emphasize the relative importance of each objective among 
others. The three objectives to be weighed are summarized as the large clear span, the 
minimum cost, and the minimum environmental damage. Costs are estimated using 
some features as the total weight per floor area, overall building height, and net/gross 
floor area ratio rather than exact costs. Structural design of floor beams is estimated 
according to span/depth ratios obtained from manufacturer's catalog. The system is 
reported to have good user interaction and smart behavior with the deficiency of 
requiring more presentation of design summary and graphical form of presentation.  
 
Methods based on genetic algorithms optimization were derived for mesh partitioning 
problem for explicit parallel dynamic finite elements. (Sziveri et al (2000), 
Papadrakakis et al (2003)) and dynamic tuning of structures, which eliminates the 
vibrations by altering the dynamic properties of the system  (Tesar and Drzik 
(1995)). The relationship between damping and vibration amplitude was obtained by 
Li et al (2000) Based on full scale measurements of damping in a tall building using a 
time series analysis method (TSA). Two models of damping in a tall building, the 
artificial neural network (ANN) model and the auto-regressive (AR) model, were 
established by employing ANN and AR methods, and used to predict the damping 
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values at high amplitude level, which are difficult to obtain from field measurements. 
In order to get high accuracy, a genetic algorithm strategy was employed to aid in 
training the ANN. Comparison analysis of the neural network model and the AR 
model of damping is made, and the results are presented and discussed. The results 
predicted by the AR model and GRNN model of damping indicated that the two types 
of models have given satisfactory results. The maximum absolute error caused by the 
AR model and the GRNN with GA is 0.061 and 0.046 in the direction 1, respectively, 
and the corresponding maximum relative error is 10.6% and 9.8%, respectively. In the 
direction 2, the maximum absolute error caused by the AR model and the GRNN with 
GA is 0.058 and 0.028, respectively, and the corresponding maximum relative error is 
10.3% and 5%, respective. It was also concluded that the prediction curves produced 
by the GRNN with GA are a little closer to the actual curve than that given by the AR 
model in the direction 1 and direction 2. Comparing the prediction errors and curves 
of the AR model and the GRNN with GA resulted in the conclusion that the 
performance of the neural network model is better than that of the AR model in the 
direction 1 and direction 2 under the experimental conditions reported.  
 
Detecting the extent of damage in structure from modal data (natural frequencies and 
mode shapes) can be viewed as an optimization problem. Using modal based methods 
in practical applications reduces time and costs of performing damage monitoring and 
predictive maintenance. Such methods are based on the fact that damage of structural 
members alters the stiffness of the structure and consequently modal properties. The 
minimization of some error functions derived from the difference between measured 
and suggested values of dynamic properties is the aim of such analysis (Shtovba and 
Pankevich (2004)).  
 
Genetic algorithm has been applied to eign-sensitivity analysis of damage in 
structures by Friswell et al (1998). The objective of the study was to identify the 
position of one or more damage sites in a structure and to estimate the extent of 
damage at these sites. Design variables include discrete values of damage location and 
continuous variable indicating the extent of damage as a percentage reduction in 
stiffness. The optimization The objective function used is based on the measured data 
ad consists of three terms related to the error in natural frequencies,  and the error in 
mode shapes and a term to weight against two damage sites. Genetic algorithm used 
single point crossover with population of 10 members per generation, crossover 
probability 60 percent and mutation probability of 0.5 percent. A simulated cantilever 
steel beam is tested for which the change of only 5 natural frequencies is considered 
to locate damage. Four cases of damage is applied to such beam including the damage 
of single site and the damage of conflicting element near the edge, the damage of two 
sites and the case of adding extra mass at the end including systematic errors. The 
proposed method estimates well the location of damage in the simulated cantilever 
beam example. Another experimental example of cantilever plate with saw cuts has 
been also presented for which the correct location of damage was found after only 8 
generations.    
 
 
Rao et al (2004) have proposed a method for locating and quantifying the damage in 
structural members using the concept of residual forces. Genetic algorithm has been 
applied for the minimization of objective function consisting of the sum squared 
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diagonal terms of the residual force matrix. All modes of vibration are considered in 
the formulation. A computer program in C language is developed to perform the 
analysis using Binary coded genetic algorithm. Two point crossover and Tournament 
selection approach are applied in the genetic algorithm with population 40 
individuals. The crossover probability is taken 100 percent while the mutation 
probability of 0.1 percent is considered. Te proposed procedure has been applied to 
several problems with different damage extents to test the applied methodology. The 
first is a plane truss having reduction in the stiffness of two members with different 
extents. The second is a cantilever beam with 10 elements for which cases if 
undamaged structure, beam with two elements damaged, and beam with element 
failed (100% reduction in stiffness). Portal frame example with 6 elements has been 
also discussed. The solution using genetic algorithms results in excellent agreement 
with that of theoretical predicted mechanical simulation. 
 

3.5. Optimization of Composite Structures and Composites 

In their review of methods used to optimize composite panels, Venkataraman and 
Haftka (1999) reported that genetic algorithms have been the most popular method 
for overcoming the optimization complexity of composite panels. This can be 
attributed to the fact that the problem is discrete in nature such that the ply orientation 
must be one of specific values produced by the manufacturer. Optimum design of the 
weaving structure of three-dimensional (3-D) reinforced composites was carried out 
(Okumura et al (1995)) and the stacking sequence of composite laminates was 
investigated (Lin and Lee (2004))  
 
A formulation and solution technique using genetic algorithms (GA) for design 
optimization of composite leaf springs was presented by Rajendran  and 
Vijayarangan (2001). Leaf springs are commonly used in the suspension system of 
automobiles and are subjected to millions of varying stress cycles leading to fatigue 
failure. For optimal weight with adequate strength and stiffness, design variables were 
leaf thickness and width. It was observed from the study that optimization using GA 
leads to larger weight reduction due to its search for global optimum as against the 
local optimum in traditional search methods.  
 
Description of the concept of using genetic algorithms (GA) procedures in layout 
optimization of composite structures was presented (Muc and Gurba (2001)). The 
layout optimization was understood in the sense of stacking sequence, shape and size 
(material, volume) optimization. The attention was focused on the applicability of 
genetic algorithms in conjunction with the finite element computation of objective 
functions. Main conclusions of the study contains that proper coding of design 
variables and then selection of a new population are essential for optimization and that 
optimization procedures do not require any sensitivities studies what seems to be a 
great advantage over the classical optimization methods.  
 
Soremekun et al (2001) explored several generalized elitist procedures for the design 
of composite laminates. The problem design variables are discrete as ply angles and 
ply thickness can only be available in manufacturer specific values. Maximizing the 
buckling load of simply supported composite plate and maximizing the twisting 
displacement of cantilever composite plate was set as the two objectives of the 
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analysis. Generalized elitist genetic algorithm (GEGA) was suggested as an 
alternative to the standard genetic algorithm (SGA). It is shown that the generalized 
elitist selection (GES) procedures are superior to the single individual (SI) procedure 
for two types of problems. The first type involves many global optima, and the GES 
procedure can find several global optima more efficiently than the SI procedure and 
this may give the designer more design freedom. The second type of problem involves 
an isolated optimum surrounded by many designs with performance that is very close 
to optimal. It is shown that GES procedures can find the optimum and near optimal 
designs much more easily and reliably than the SI procedure. 
 
A methods for composite laminate optimization based on genetic algorithms was 
investigated by Grosset et al (2002). The work investigated how the efficiency of 
standard genetic algorithms can be improved by adding some statistical (the bayesian 
Optimization algorithm BOA) processing. Simple optimizations of the in plane 
properties of a laminated plate were used in this preliminary investigation. Only linear 
case were considered to maximize the in-plane longitudinal stiffness A11 subjected to 
constraints on the transverse stiffness A22 and shear stiffness A66 of a symmetric and 
balanced composite laminate. The problem constitutes discrete parameter problem as 
ply angles can take only set of values (15o, 30o, 45o, etc….). Since BOA-GA model is 
a faithful representation of the actual structure of the data, it can achieve better results 
than the conventional recombination and selection operators of the standard GA, 
which rely for a large part on chance. For the non-linear case, however, it is somewhat 
surprising that the linear models keep up with the standard GA. Very encouraging 
results were included in the study which show that there is room for improvement on 
standard GAs. 
 
Hansel et al (2002) presented realizing the weight-minimal laminate structures by 
topology optimization using the genetic algorithm and heuristic optimization 
algorithm. two alternative approaches for. Topology optimization was carried out in a 
layer-wise manner such that the individual laminate plies are allowed to have their 
individual topologies. In addition to sizing (adaptation of lay up angles and single ply 
thicknesses) and shape (the optimization by the variation of the outer shape of the 
considered laminate structure) optimization, the techniques of topology optimization 
have the potential to reveal significant weight savings by adapting the laminate 
connectivity to the given requirements. Low-cost manufacturing was ensured by 
limiting the choice of orientation angles to 0, 45, and 90 and fixing the ply thicknesses 
to the discrete values 0 (no material) and h (whole ply material). The importance of 
such optimization comes from the fact that the use of laminates with unidirectional 
carbon fiber reinforced plastics (CFRP) plies is well established for lightweight 
constructions, in particular in aircraft and spacecraft engineering. The required 
structural analyses are made by means of commercial finite element codes (ANSYS 
and MSC/ NASTRAN NASTRAN). The objective function was taken as the 
minimization of total mass while large number of discrete design variables and large 
number of constraints were contained. Design variables are considered as the material 
distribution and the local reinforcement directions to the given structural needs. Two 
examples of laminate structures show the effectiveness of the proposed algorithms. 
Binary coding of the plate topology was performed to demonstrate the existence of 
material or void as shown in Figure (30). 
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Figure (30) Coding of Plate Topology Phenotype (Distribution of Void/Material) 
(Hansel et al (2002)) 

 
 
For the example of cantilever plate for which the optimum topology is shown in 
Figure (31), the total weight of 3.25 g was reached which was reported to be about 
15% less than the weight of the structure when solved using the heuristic optimization 
algorithm. 
 

 
 

Figure (31) Optimized Cantilever Plate (Hansel et al (2002)) 
 
 
For the aluminum cantilever plate shown in Figure (32), weight could be reduced 
from 13.5 g to only 10.8–11.4 g which constitutes a further weight reduction of about 
15–20% over the heuristic optimization algorithm. The design of the L-shaped 
cantilever (Figure (33)) using genetic algorithm is also similar to the design found by 
the heuristic algorithm while The genetic algorithm requires about 3500 finite element 
analyses instead of about 50 analyses with the heuristic algorithm.  
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Figure (32) Optimized Aluminum Plate (Hansel et al (2002)) 
 
 
 

 
Figure (33) Optimization of L-Shaped Cantilever (Hansel et al (2002)) 
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Finally, to illustrate the efficiency of composite structure, it was reported that the 
optimized aluminum structures have a weight of about 10.8–13.5 g while the 
structures of composite material have a weight of only 3.25–3.8 g. 
 
 
The optimization of laminated and sandwich plates with respect to buckling load and 
thickness was performed by Di Sciuva et al (2003), using different sets of constraints 
such as the fundamental frequency, the maximum deflection under transverse uniform 
distributed load, the mass and the buckling load. genetic algorithm and simulated 
annealing was used to solve the optimization problem together with two plate models 
(classical plate theory and cubic zig-zag model). The calculations reported in the 
study were aimed mainly to compare the two evolutionary algorithms (GA and SA) 
and the two plate theories (CLT and CZZ). The results of the performed investigations 
show that the evolutionary methods are simple to implement, and give good results in 
all the studied problems. The performed analyses show that the two evolutionary 
algorithms provide almost the same results though the SA procedure is less time 
consuming; furthermore, results of the two displacement theories are the closer to 
each other the higher the side-to-thickness ratio is. 
 

3.6. Active and Passive Control 

Structural control aimed at enhancing the structural functionality and safety against 
natural hazards as strong earthquakes and speed wind gusts by reducing the structural 
response. While passive control is attractive due to its simplicity, and as it is power 
free, active control is attractive due to its potential effects and large improvements of 
response (Arfiadi and Hadi (2000)). Passive control systems such as base isolation, 
viscoelatic dampers, and Tuned Mass Dampers (TMDs) have been implemented in a 
number of full scale buildings throughout the world (Ahlawat and Ramaswamy 
(2003)) 
 
 
Optimal design of absorber system consisting of four TMDs to control the response of 
torsionally coupled structures to earthquake excitation using genetic algorithms is 
discussed by Ahlawat and Ramaswamy (2003). Optimization aimed at controlling 
the torsional mode of vibration effectively in addition to flexural modes. The problem 
is categorized as multi-objective optimization problem including three objectives of 
minimizing (1) the maximum peak displacement, (2) the maximum peak acceleration, 
and (3) the maximum peak rotation. Several constraints were considered as the total 
mass of the TMD, maximum stiffness, maximum damping and maximum 
eccentricities. Constraints are implemented in coding of the chromosome for the GA 
as maximum and minimum limits. The building model shown in Figure (34) has been 
assumed to have the principle axis of resistance for all stories oriented along the x as y 
directions. The eccentricities of floors are different as the mass and resistance centers 
do not lie in vertical axis and the radius of gyration and translational to rotational 
stiffness ratio differ from floor to floor. Ground acceleration which is applied in an 
inclined direction is assumed the same at all points of foundations.  
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Figure (34) Idealized Torsionally Coupled 
Building (Ahlawat and Ramaswamy 

(2003)) 

Figure (35) Suggested Arrangement on 
(TMD) on the last floor of Building 

(Ahlawat and Ramaswamy (2003)) 
 
 
As a multiobjective problem having three objectives, three-branch tournament genetic 
algorithm was applied (Figure (36)). Binary coding was customized while crossover 
and mutation were performed at random locations. Another investigation was carried 
out for the optimal FLC driven hybrid mass damper (HMD) for torsionally coupled, 
seismically excited building by Ahlawat and Ramaswamy (2003). As reported, the 
proposed control strategy proved to effectively control the torsional response in 
addition to the flexural response of the structure.  
 
Park et al (2004) presented an approach for integrated optimum design of 
viscoelastically damped structural system. The use of viscoelastic dampers or larger 
amounts of structural members may decrease the probability of failure and the 
expected damage cost due to possible earthquake events although it may increase the 
initial construction cost. Thus, the life-cycle cost that mainly consists of the initial 
construction cost and the damage cost estimated by failure probability over its entire 
lifetime was introduced as the optimization criterion to be minimized. Considering the 
structure and dampers as a combined or an integrated system, the characteristics of the 
system and the design constraints can be accounted for from the design step.  
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Figure (36) Three branch tournament genetic algorithm (Ahlawat and Ramaswamy 

(2003)) 
 

 
Viscoelastically damped building was modeled, as shown in Figure (37), as a shear 
building structure having one degree-of-freedom (DOF) of horizontal direction per 
node (floor) which cannot express the effect of vertical displacement and/or rotational 
deformation in each node. Authors attributed the use of shear building model to the 
economic and simplicity consideration especially in the preliminary design stage 
which only needs basic information on the design variables. The frequency domain 
approach was implemented in the analysis as simple method is needed. Optimization 
problem was formulated by adopting structural sizing variables, locations and the 
amount of the viscoelastic damper as design variables. In practical applications, 
design variables such as column stiffness, damper capacity, and dampers locations 
may not be a continuous function because of commercial and manufacturing 
constraints. A genetic algorithm is used as a numerical searching technique in order to 
simultaneously find the optimum parameters of the integrated system. The story drift 
for defining the limit states of a building structure subjected to a horizontal ground 
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motion was limited to values included in the UBC-97 provisions to control inelastic 
deformations and to prevent potential instabilities in both structural and nonstructural 
elements. The shear deformation limit of the damper was defined using the relative 
displacement of a viscoelastic material. In genetic algorithm application, population 
of 50 chromosomes as shown in Figure (38) was used with binary string size of 16n 
where n is the number of stories. Selection was based on roulette wheel selection, and 
crossover and mutation operations were performed with probability (pc= 0.85 and pm= 
0.01). The proposed design method was verified with a numerical example of an 
eight-story building. From comparative results, it was found that the integrated design 
approach can improve the seismic performance of the structural system while it 
maintains low life-cycle cost. It was concluded that the proposed method has the 
advantages, not only from the viewpoint of seismic performance but also economic 
aspects. 
 
 

 
 

Figure (37) Model of Controlled Building (Park et al (2004)) 
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Figure (38) Binary Code Representation (Park et al (2004)) 

 
 
Wongprasert and Symans (2004) applied the genetic algorithm to the optimization 
of damper distribution in controlling a 20 story benchmark building. Knowing the 
number of dampers and their properties, the target was to determine the distribution of 
dampers that gives the largest response reduction of the building. A genetic algorithm 
optimizer of the passive parameters of dampers and the controller gain was utilized 
for active and passive control of space structures (Arfiadi and Hadi (2000)). Devices 
included in the study are the mass damper and active bracing system for which static 
(direct) output feed back controller was utilized. Authors proposed the use of either 
binary coded or real coding genetic algorithm representation for design variables. 
Passive tuned mass damper (TMD), active TMD, and active bracing system are 
investigated examples introduced to verify the performance of the optimizer. 
 
Too many investigations were carried out for the optimization of fuzzy logic control 
(FLC) in actively controlled structures (Belari and Titel (2000)). Ahlawat and 
Ramaswamy (2002-a) proposed a genetic algorithm based optimizer for fuzzy logic 
control (FLC) of hybrid control system composed of tuned mass damper (TMD) and 
active mass driver (AMD). Binary coded GA was used for this application with two-
branch tournament selection for multi-objectives optimization with penalty function to 
account for constraints violation. Ten story shear building with HMD at top floor was 
used to demonstrate the multi-objective optimal design of FLC driven HMD. The 
stability of the FLC was examined for each of the Pareto-optimal design using the 
extreme (worst) initial conditions and was found to be stable. It was shown that, with 
the help of GA, the optimum values of design parameters of the hybrid control system 
can be determined without specifying the modes to be controlled. The proposed FLC 
driven HMD was found to be very effective for vibration control of seismically 
excited buildings in comparison with available results of the same examples but with 
a different optimal absorber.  
 
Ahlawat and Ramaswamy (2004) proposed an approach for multi-objective optimal 
design of a fuzzy logic controller (FLC)-driven active tuned mass damper (ATMD) 
using genetic algorithm as an optimized. As genetic algorithms are more effective in 
handling a discontinuous and non-convex domain, a multi-objective optimization 
version of the genetic algorithm was proposed by for obtaining the FLC and ATMD 
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design. The evaluation criteria for both the acceleration and displacement responses 
were used as the two objective functions for such multi-objective optimization 
problem. The stress limits were incorporated as constraints while the maximum 
number of sensors utilized in of control were limited to six. The two branch 
tournament approach was used to represent multi-objective criteria and penalty 
function was used for constraints violation in binary coded chromosome 
representation. The effectiveness and performance of the proposed FLC-driven 
ATMD has been investigated for the third-generation benchmark problem for the 
response control of wind-excited tall buildings. The design of the FLC was carried out 
using the MATLAB-SIMULINK tool. Performance of the proposed control system 
was found to be better than the sample controller given in the benchmark problem. 
The proposed controller is less sensitive than the sample controller for the variation in 
the stiffness of the structure. 
 

4. SUMMARY AND CONCLUSIONS 
Genetic Algorithms are search algorithms based on the mechanics of natural selection 
and natural genetics. They combine survival of the fittest among string structures with 
a structured yet randomized information exchange to form a search algorithm with 
some of the innovative flair of human search.  
 
Genetic algorithms were extensively applied to the problem of optimization of 
structures. The application of genetic algorithms in the field of structural optimization 
proved to be in increased growth during the last few years such that, in the last year 
considerable number of articles is observed in the literature in all categories of 
applications considered. Various fields of optimal structural design attract the 
application of genetic algorithms which increase year after year. In 1994 and later, 
only one field was considered (optimal design of steel structures) while five 
categories of fields are reported for year 2004. As reported by several investigations, 
genetic algorithms are the most effective and widely used techniques among other 
evolutionary algorithms as simulated annealing, differential evolution….etc,  
 
Genetic algorithms proved to be efficient, accurate reliable and robust when applied to 
structural optimization problems. For various applications of optimum structural 
design, the use of genetic algorithm produces better solution than other methods, if 
any, especially in case of multiobjective optimization problems having many 
constraints and extensive design variables.  
 
Modifications were applied to the standard genetic algorithm procedure to improve its 
exploration capability and produce better convergence. These modifications include 
the use of real coded genetic algorithm, the use of adaptive penalty to represent 
constraints, the application of two and three tournament selection or the Pareto set 
filter to deal with multiobjective optimization problems (MOP) and the use of parallel 
genetic algorithm for more economic computations. 
 
Two main drawbacks of genetic algorithms can be observed when applying to 
structural optimization problems.  
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 The first is that GA is not theoretically guaranteed optimization method 
and that the optimality of its results is not verified. Such drawback can be 
ignored as most structural optimization problems are discrete, extensively 
constrained, and may converge to locally optimal regions; which make 
traditional optimization methods fail to deal with them. This makes no 
method exists for optimization of structural design problems and the "near 
optimum" obtained by using genetic algorithms can be, in most cases, the 
best solution.  

 
 Genetic algorithms are computationally expensive when applied to 

structural optimization problems. Extensive computational effort is needed 
especially for calculating the fitness of individuals which may be carried 
out by means of numerically expensive methods such as the finite element. 
Improvements can be made on the computational efficiency by using more 
simplified structural models (even approximate) and using new techniques 
in applying the genetic algorithms (e.g. parallel processing). 

 

5. PROMIZING FIELDS AND SUGGESTED AppLICATIONS 
The application of genetic algorithm in the field of optimum structural design stills an 
open area of research, which can extract new fields and techniques. In this section 
samples of such promising areas and applications for which the application of genetic 
algorithm may be efficient are briefly presented. 
 
Optimization of High Rise Buildings Using Genetic Algorithm 
  

The selection of lateral load resisting elements of high rise buildings is a major 
and effective stage of structural design. Selecting  the lateral load resisting 
system of high rise building can be done using genetic algorithms in terms of: 
 

  Optimization the behavior of buildings subjected to lateral loads by 
selecting the appropriate lateral load system.  
 

  Minimizing the eccentricity of lateral load in asymmetric-plan buildings 
by altering the distribution of structural elements.  

 
Genetic  Algorithm Optimization of earth Structures and foundations 
  

Optimization of soil structures is of most importance due to the high material 
and construction costs. Genetic algorithms can be applied in different types of 
earth structures such as:  
 

  The optimization of retaining wall in terms of minimum volume 
subjected to stability and strength constraints. Dimensions of the wall 
represent the design variables to be evaluated. 
 

  Optimization of arrangement of piles supporting mat foundation.  
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Application Of Genetic Algorithm For Optimum Retrofitting Of Buildings 
  

Due to the increased need for retrofitting of existing buildings and the high 
costs of such retrofitting, minimization of retrofitting cost and/or time are 
required by: 
 

  Selecting the suitable method of retrofitting  
 

  Choosing elements for which retrofitting takes place.  
 
Optimum Design Of Cable Stayed Bridges Using Genetic Algoruthm 
 
 In the field of analysis and design of cable stayed bridge, different parameters 

can be used as design variables to perform multioptimization of costs, 
defection and stability of the bridge. Suggested design variables include 
arrangement of cables, pylon shape, deck type, and pylon-deck connection 
type. 

 
Genetic Algorithm Optimization of Stiffened Plates 
  

In stiffened plates, balanced design of slab and web is required. The 
arrangement of ribs together with the slab thickness can be considered as the 
design variables. The total cost is the objective function (fitness) subjected to 
deformations, strength and buckling constraints.  
 

 
Improving The Efficiency Of Genetic Algorithm 
  

As the major drawback of genetic algorithm is the computation effort as result 
of fitness calculation, new strategies are needed to improve the efficiency of 
genetic algorithm as:  
 

  Development of more reliable approximate methods in structural analysis 
to replace current tedious numerical methods.  
 

  Use of more efficient techniques to improve the convergence and reduce 
the cost of genetic algorithm as parallel GA.  
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